skip to main content


Search for: All records

Creators/Authors contains: "Hartmann, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dusty plasmas are electrically quasi-neutral media that, along with electrons, ions, neutral gas, radiation, and electric and/or magnetic fields, also contain solid or liquid particles with sizes ranging from a few nanometers to a few micrometers. These media can be found in many natural environments as well as in various laboratory setups and industrial applications. As a separate branch of plasma physics, the field of dusty plasma physics was born in the beginning of 1990s at the intersection of the interests of the communities investigating astrophysical and technological plasmas. An additional boost to the development of the field was given by the discovery of plasma crystals leading to a series of microgravity experiments of which the purpose was to investigate generic phenomena in condensed matter physics using strongly coupled complex (dusty) plasmas as model systems. Finally, the field has gained an increasing amount of attention due to its inevitable connection to the development of novel applications ranging from the synthesis of functional nanoparticles to nuclear fusion and from particle sensing and diagnostics to nano-contamination control. The purpose of the present perspectives paper is to identify promising new developments and research directions for the field. As such, dusty plasmas are considered in their entire variety: from classical low-pressure noble-gas dusty discharges to atmospheric pressure plasmas with aerosols and from rarefied astrophysical plasmas to dense plasmas in nuclear fusion devices. Both fundamental and application aspects are covered.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. An interesting aspect of complex plasma is its ability to self-organize into a variety of structural configurations and undergo transitions between these states. A striking phenomenon is the isotropic-to-string transition observed in electrorheological complex plasma under the influence of a symmetric ion wake field. Such transitions have been investigated using the Plasma Kristall-4 (PK-4) microgravity laboratory on the International Space Station. Recent experiments and numerical simulations have shown that, under PK-4-relevant discharge conditions, the seemingly homogeneous direct current discharge column is highly inhomogeneous, with large axial electric field oscillations associated with ionization waves occurring on microsecond time scales. A multi-scale numerical model of the dust–plasma interactions is employed to investigate the role of the electric field in the charge of individual dust grains, the ion wake field and the order of string-like structures. Results are compared with those for dust strings formed in similar conditions in the PK-4 experiment. 
    more » « less
  3. Abstract

    Atmospheric pressure capacitively coupled radio frequency discharges operated in He/N2mixtures and driven by tailored voltage waveforms are investigated experimentally using a COST microplasma reference jet and by means of kinetic simulations as a function of the reactive gas admixture and the number of consecutive harmonics used to drive the plasma. Pulse-type ‘peaks’-waveforms, that consist of up to four consecutive harmonics of the fundamental frequency (f = 13.56 MHz), are used at a fixed peak-to-peak voltage of 400 V. Based on an excellent agreement between experimental and simulation results with respect to the DC self-bias and the spatio-temporal electron impact excitation dynamics, we demonstrate that Voltage Waveform Tailoring allows for the control of the dynamics of energetic electrons, the electron energy distribution function in distinct spatio-temporal regions of interest, and, thus, the generation of atomic nitrogen as well as helium metastables, which are highly relevant for a variety of technological and biomedical applications. By tuning the number of driving frequencies and the reactive gas admixture, the generation of these important species can be optimised. The behaviour of the DC self-bias, which is different compared to that in low pressure capacitive radio frequency plasmas, is understood based on an analytical model.

     
    more » « less
  4. Abstract

    Spatially resolved tunable diode-laser absorption measurements of the absolute densities of He-I (23S1) metastables in a micro atmospheric pressure plasma jet operated in He/N2and driven by ‘peaks’- and ‘valleys’-type tailored voltage waveforms are presented. The measurements are performed at different nitrogen admixture concentrations and peak-to-peak voltages with waveforms that consist of up to four consecutive harmonics of the fundamental frequency of 13.56 MHz. Comparisons of the measured metastable densities with those obtained from particle-in-cell/Monte Carlo collision simulations show a good quantitative agreement. The density of helium metastables is found to be significantly enhanced by increasing the number of consecutive driving harmonics. Their generation can be further optimized by tuning the peak-to-peak voltage amplitude and the concentration of the reactive gas admixture. These findings are understood based on detailed fundamental insights into the spatio-temporal electron dynamics gained from the simulations, which show that voltage waveform tailoring allows to control the electron energy distribution function to optimize the metastable generation. A high degree of correlation between the metastable creation rate and the electron impact excitation rate from the helium ground state into the He-I ((3s)3S1) level is observed for some conditions which may facilitate an estimation of the metastable densities based on phase resolved optical emission spectroscopy measurements of the 706.5 nm He-I line originating from the above level and metastable density values at proper reference conditions.

     
    more » « less